Identification Features Analysis in Speech Data Using Gmm-Ubm Speaker Verification System

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving GMM-UBM speaker verification using discriminative feedback adaptation

The Gaussian Mixture Model Universal Background Model (GMM-UBM) system is one of the predominant approaches for text-independent speaker verification, because both the target speaker model and the impostor model (UBM) have generalization ability to handle “unseen” acoustic patterns. However, since GMM-UBM uses a common anti-model, namely UBM, for all target speakers, it tends to be weak in reje...

متن کامل

Geometric contamination for GMM/UBM speaker verification in reverberant environments

Reverberation generated by multi-path acoustic propagation in enclosures is one of the most critical issues for distant-speech speaker verification systems. While late arrivals can be treated as additive noise, early reflections critically affects the speech spectral properties that allow differentiating among speakers. Considering a standard GMM/UBM speaker verification system based on MFCC, a...

متن کامل

Text Dependent Speaker Verification Using Un-Supervised HMM-UBM and Temporal GMM-UBM

In this paper, we investigate the Hidden Markov Model (HMM) and the temporal Gaussian Mixture Model (GMM) systems based on the Universal Background Model (UBM) concept to capture temporal information of speech for Text Dependent (TD) Speaker Verification (SV). In TD-SV, target speakers are constrained to use only predefined fixed sentence/s during both the enrollment and the test process. The t...

متن کامل

Speaker Verification Using Orthogonal GMM with Fusion of Threshold, Identification Front-end, and UBM

This paper shows that the performance of a Gaussian Mixture Model using a Universal Background Model (GMM-UBM) speaker verification (SV) system can be further improved by combining it with threshold and speaker identification (SI) “front-ends.” The paper formulates performance in terms of false rejection rate and false acceptance rate of the overall SV system. We show analytically that an SI-ba...

متن کامل

A discriminative performance metric for GMM-UBM speaker identification

Gaussian mixture modeling with universal background model (GMM-UBM) is a widely used method for speaker identification, where the GMM model is used to characterize a specific speaker’s voice. The estimation of model parameters is generally performed based on the maximum likelihood (ML) or maximum a posteriori (MAP) criteria. In this way, interspeaker information that discriminates between diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SPIIRAS Proceedings

سال: 2017

ISSN: 2078-9599,2078-9181

DOI: 10.15622/sp.52.2